
Outlook on Existing and Future
Grid Programming Paradigms
EchoGrid Workshop Athens 2008EchoGrid Workshop Athens 2008

Bernhard Schott bschott@platform.com
Guillaume Mecheneau gmecheneau@platform.com
Platform EU-Research Team, Paris

Date: 9th June 2008

Grid Programming Paradigms

Agenda

• Platform Computing

• (Grid) Programming Paradigms

• State of the Art and possible extensions
3 Examples:

1. Grid embracing the Application: Platform LSF & EGO

6/12/2008 2

1. Grid embracing the Application: Platform LSF & EGO

2. SOA application integration: Platform Symphony

3. On-demand resource acquisition and formation of application
specific Grids: QosCosGrid

• Summary: Trends in Grid Programming

IntroductionIntroduction

Platform Computing

Platform is a pioneer and the global leader in High Performance Computing
infrastructure software, delivering integrated software solutions that enable
organizations to improve time-to-results and reduce computing costs.

Over 2200 Customers Worldwide
Electronics, Financial Services, Manufacturing, Life Sciences, Oil & Gas,
Government, Universities & Research, Telco …Government, Universities & Research, Telco …

Recognized Leader in HPC, Cluster and Grid Computing
16 years global experience

Worldwide offices, resellers and partners

24x7 follow the sun support and services

Growing & Profitable since inception in 1992
Self-funded

No debt; money in bank

6/12/2008 4

Office Locations
North America
Toronto (HQ)

Offices and VARs

VARs
U.S. South Africa
Italy Sweden
Israel Turkey
Germany India
Spain Malaysia
Korea Thailand
Taiwan Australia
Singapore Austria
Japan France
U.K. China
The Netherlands U.A.E.
Poland Portugal
Brunei

Toronto (HQ)
San Jose
Washington
Detroit
Los Angeles
Boston
New York

International

China
Japan
Korea
UK
Germany
France

6/12/2008 5

Big Companies Trust Us

Electronics

• AMD

• ARM

• ATI

• Broadcom

• Cadence

• Cisco

• HP

F in a n c ia l

Services

• BNP Paribas

• Citigroup

• Deutsche
Bank

• Fortis

• HSBC

• JP Morgan

Industrial
Manufacturing

• Airbus

• BMW

• Boeing

• Bombardier

• British
Aerospace

• Daimler &

L ife

Sciences

• AstraZeneca

• Bristol Myers-
Squibb

• Celera

• Dupont

• GSK

• Johnson &

G o v e rn m e n t

& Research

• ASCI

• CERN

• CINECA

• DoD, US

• DoE, US

• ENEA

• ETH

Other
Business

• Bell Canada

• Cablevision

• Deutsche
Telekom

• Ebay

• Starwood
Hotels

• HP

• IBM

• Motorola

• NVIDIA

• Qualcomm

• Samsung

• ST Micro

• Synopsys

• TI

• Toshiba

• JP Morgan
Chase

• Lehman

• Mizuho
Financial

• MUFG

• Prudential

• Société
Générale

• Sal
Oppenheim

• Daimler &
Chrysler

• GM

• Lockheed
Martin

• Pratt &
Whitney

• Toyota

• Volkswagen

• Xi'an Aircraft
Design

• Johnson &
Johnson

• Merck

• Novartis

• Novo-Nordisk

• Pfizer

• Wellcome
Trust Sanger
Institute

• Wyeth

• ETH

• Fleet
Numeric

• GSI

• INFN

• MaxPlanck

• SSC, China

• TACC

• TU Dresden

• Univ Tokyo

Hotels

• Telecom
Italia

• Telefonica

• Sprint

• GE

• IRI

• Cadbury
Schweppes

6/12/2008 6

StrategicStrategic
PartnersPartners

PremierPremier
PartnersPartners

Partner Ecosystem

PartnersPartners

SelectSelect
PartnersPartners

(Grid) Programming

6/12/2008 8

(Grid) Programming
Paradigms

(Grid) Programming Paradigms

• (Grid) Programming Paradigms
– New Programming Paradigms will include non-Grid applications or

usage scenarios, e.g. apps running with our without Grid depending
on problem sizes.

• Expected Future Programming Paradigm
– Application express their needs and behavior towards infrastructure

that re-arranges itself accordinglythat re-arranges itself accordingly

– Infrastructure describes resource availability and properties (e.g. HPC
backbone topology) to the application that (re-)compiles or
(re-) configures itself accordingly

– Platform position paper contributed to the Oxford Challengers
Workshop on Standards Roadmap to 2020:
http://www.w3c.rl.ac.uk/pastevents/ChallengersWorkshop/Schott.pdf
(Bernhard Schott, Chris Smith, Werner Dubitzky)

6/12/2008 9

(Grid) Programming Paradigms

We assume a world were applications are capable of adjusting
themselves to the available environment; at the same time intelligent
environments adjust themselves to applications requirements.

Whether the resource (Grid, Storage) managers provide the
necessary dynamic configuration services or the complementary
launcher components are provided by the applications, this scenario
will result in automatically provisioned environments that would gowill result in automatically provisioned environments that would go
along with computing resources emulating different machine
architectures, types.

It's this notion of application portability that needs the descriptive
capabilities on the application side; portable applications that can
work in the grid environment and a grid fabric that can adapt to
application needs.

Full document: http://www.w3c.rl.ac.uk/pastevents/ChallengersWorkshop/Schott.pdf

<…>

6/12/2008 10

(Grid) Programming Paradigms

• 3 Examples on State of the Art application to Grid integration
1. Grid embracing the Application: Platform LSF

• Platform LSF is the industry workhorse for some >2000 customers around the
world. In most cases applications are not “written” for the Grid use, do not use
Grid API. The Grid is in charge to adapt itself to the application by comfortable,
sophisticated and even dynamic “embracement”.

2. SOA application integration: Platform Symphony
• Platform Symphony implements “real time” execution of some application classes

(SOA) in the HPC Grid (=cluster, extended cluster). Keep It Sweet and Simple: (SOA) in the HPC Grid (=cluster, extended cluster). Keep It Sweet and Simple:
Very easy to use APIs allow the application to request resources (=service
instances) instantaneously..

3. On-demand resource acquisition and formation of application
specific Grids: QosCosGrid

• QosCosGrid (= Quasi Opportunistic Supercomputing for Complex Systems on the
Grid) Complex Systems applications use the QosCosGrid-Toolbox to parallelize
their workload in order to use distributed resources.

• Towards the QosCosGrid-Broker they express requirements and behavior.

• The Broker acquires resources on-demand and form an application specific Grid

6/12/2008 11

Example 1:
Grid embracing the

6/12/2008 12

Grid embracing the
Application:
Platform LSF & EGO

Embracing the application: Platform LSF

Whatever the Grid does for you already, saves you lines of
code and more …

• Overview on the common layered architecture and LSF
– Foundation: unified resource layer – Enterprise Grid Orchestrator

– Describing Resource Allocation: Policies on supply

• Embracing the Application:• Embracing the Application:
– Interfaces: GUI, CLI, APIs, BES/JSDL/HPC-Profile++, DRMAA,

Workflow (GUI, CLI, XML), ESUB

– Arbitrary (dynamic) Resource Semantics

• Describing Application behavior: Application Profiles

• Describing Usage: Policies on consumption
– LSF Modular Scheduler

6/12/2008 13

Application
Workload

Management
Platform
LSF HPC

API/CLI

Platform
VMO

API/CLI

3rd Party
Middleware
Integration

API/CLI

Applications

LS MDA EDA CAE FSI VM’s J2EE DB’s ERP CRM BI

Platform
LSF

Platform
Symphony

API/CLI API/CLI

SOA

Platform Enterprise Grid Orchestrator

Open & Decoupled Architecture

Platform
Process Manager

API/CLI

System
Resource

Orchestration

Resources
Plug-ins

Infrastructure
Plug-ins

Platform EGO Standard Services

H/W

Solaris

H/W

Aix

H/W

Windows

H/W

Linux

H/W

Servers

Grid Devices
H/W

Desktops

AllocateManage Execute

Platform EGO Kernel

Fail-over

Portal
Service

Logging
Service

Deployment
Service

Event
Service

Service
Director

Data Cache

SNMP

Security

Platform EGO SDK/API

Storage

License

e.g. Infiniband

SOI

6/12/2008 14

Platform EGO – Simple Use Case

Platform EGO

Application
Orchestrator

Third Party Workload
Management SystemEGO

SDK

Q. What resources are
available for my application available for my application
based on current usage?

A. Resources available (Host1,
Host2, etc) for Consumer

Q. Submit Allocation
Request ?

A. Allocate Hosts to Consumer

Q. Run my Services
on EGO

A. Start Up required Application
infrastructure (Activities and

Services)
6/12/2008 15

Dynamic, flexible, scalable

• By decoupling DRM and Workload Management, multiple
Workload-Managers can dynamically flex based on workload
and relative priorities – borrowing resources from other
clusters and consumers

• Applications can request additional resources - even during
runtime

VMO LSF Symphony 1 Symphony 2

Platform EGO

B,B,B,B

B,B,B

C,C,C D,D,DA,A,A

6/12/2008 16

Dynamic, flexible, scalable

• By decoupling DRM and Workload Management, multiple
Workload-Managers can dynamically flex based on workload
and relative priorities – borrowing resources from other
clusters and consumers

• Applications can request additional resources - even during
runtime

VMO LSF Symphony Symphony

Platform EGO

B,B,B,B

B,B,B

C,C,C D,D,DA,A,A

6/12/2008 17

Embracing the application: Platform LSF

• Application Interfaces:
– GUI, CLI, APIs,

– BES/JSDL/HPC-Profile++,

– DRMAA,

– Workflow (GUI, CLI, XML), (example: SAS)

– ESUB: post submit / pre-queuing admin controlled modification of
parametersparameters

– ELIM: dynamic resource metric update

– Scheduler-Plug-In interface

6/12/2008 18

Embracing the application: Platform LSF

• Arbitrary (dynamic) Resource Semantics
– Add custom resource descriptions, dynamic metrics by ELIMs

– Boolean, numeric, string, static & dynamic values, consumable

– Example: resource [tape_drive==tape-ID]
bsub –R “rusage tape_drive==XYZ1711” will send the job to the host
with a tape drive that has loaded tape with ID=XYZ1711. If not (yet)
fulfilled, job will be pending with pending reason “waiting for resource fulfilled, job will be pending with pending reason “waiting for resource
tape_drive==XYZ1711”
Extension: ELIM to “measure” tape requests, forwarding to tape-library
controller

– Example: Application metrics. DB indicating to load balancing
infrastructure remaining #connection capacity via ELIM interface.

– Example: Application license metric. License manager interfaces via
ELIM to load balancing infrastructure, indicating possible number of
concurrent use..

6/12/2008 19

Embracing the application: Platform LSF

• Describing Application behavior and specifics:
Application Profiles
– Independent from “per host” or “per queue” definitions
– pre-execution, post-execution, jobstarter (job environment), queue
– resource requirements: mem, cpu-type, scratch space, I/O, licenses,

access to networks, databases, file systems,… etc.
– limits, runtime (soft, hard), mem (per job / per process), limits on

processes, threads, …processes, threads, …
– check-pointing method, signaling (signal sequence)
– chunk (size)

• Controlling application runtime behavior
– Exit codes (lists of -“success” exit codes, rerun exit codes, rerun but

not on same host exit codes, max #reruns / #requeues)
– Trigger on run too long / too short
– Trigger on lack of activity & mem growth. (Not mem limit!)
– Triggers optional actions like (default: email to admin)

bstop –u $username all

6/12/2008 20

Embracing the application: Platform LSF

• Describing Usage: Policies on consumption
– Fairshare methods: host partition, cross-queues, inter-queues,

hierarchical,
– Limits matrix: per queue, per user, per host (queue based, host

based), per system
– Policies: priorities, preemption, dynamic priority, parallel-greedy (job

slot, mem), backfill, infinite backfill, absolute priority, checkpointing,
migration, advance reservation …migration, advance reservation …

– SLA / goal based scheduling: deadline, speed, throughput, resource-
SLA, combinations, … (more next slides)

– Scheduling target host/CPU/core (per host definition)
– LSF Modular Scheduler: custom policy plug-ins – use your own policy

without need to rewrite the whole scheduler.

• System reliability:
– self-healing, recovery from incidents,
– policy driven proactive problem containment, “black hole” isolation
– no job loss during operation or in error condition, reconfiguration or

failover
6/12/2008 21

• LSF implements and executes SLAs for workload submitted
to a “service class” (e.g. deadline, throughput, speed, …)

• SLA is proactively managed by allocating more resources or
starting more jobs to achieve scheduling goal

• Handing over estimated run times for the jobs improve
scheduler precision – otherwise, scheduler will learn about

LSF: SLA scheduling

scheduler precision – otherwise, scheduler will learn about
the runtime

• To resources, this translates into “least impact scheduling”

– A given set of resources (= a (set of) cluster(s)) can serve more
“happy” scientists at the same time

– = progress in more projects at the same time

– = faster turn-over, shorter time to results for more projects a the same
time.

100%

= 8 Job-slots

Cluster filled to 100%

Classical
opportunistic
scheduling

LSF-SLAs : SLA “Deadline”

now

time

100%

= 8 Job-slots

Cluster filled to 100%
Classical
opportunistic
scheduling

E
a

rly e
n

o
u

g
h

 fo
r m

e

LSF-SLAs : SLA “Deadline”

now
time

scheduling

time
now

SLA 1 consumes
50% of cluster

SLA 1

“deadline”

Free resources for dialog users, real-time requests, online
sessions, training sessions, other workload

100%

“deadline”

E
a

rly e
n

o
u

g
h

 fo
r m

e

SLA 2 consumes
25% of cluster

SLA 2
“troughput”

Free resources for dialog users, real-time requests, online
sessions, other workload, other SLAs, …

100%

time

More projects -
more funding …

LSF-SLAs : SLA “Throughput”

In my workflow, I need exactly as many results as I can process per time interval.

now

4
 R

e
s
u

lt
s
/h

r

4
 R

e
s
u

lt
s
/h

r

4
 R

e
s
u

lt
s
/h

r

4
 R

e
s
u

lt
s
/h

r

4
 R

e
s
u

lt
s
/h

r

time

• How are those scheduling features related to a
Grid Programming Paradigm? (question from EchoGrid Athens’08)

• By embracing the application for its complete lifecycle in the
Grid, Platform LSF simplifies Grid integration for applications
– Application profiles implement a simple information exchange between

application and infrastructure.

– Distinct application, consumption and resource policies allow for dynamic

(Grid) Programming Paradigm
Embracing the application: Platform LSF

– Distinct application, consumption and resource policies allow for dynamic
adaptation and balancing between application and infrastructure
requirements

– Self-management functions for automated reaction on not-intended
application or infrastructure behaviour care for incidents

• These rich infrastructure features take away the need to implement
respective functions in the application code

• Build your application to your application needs

• For using the Grid, just supply an application profile giving instructions to
the infrastructure: “This is how I want to be executed”

Example 2:
HPC-SOA application

6/12/2008 27

HPC-SOA application
integration
Platform Symphony

Platform Symphony – HPC-SOA

6/12/2008 28

Performance, at any Scale

Symphony at IBM DCCoD

Scalability

1,000 concurrent clients, 100
applications

20,000+ CPU’s simulated on 1,000

physical CPUs in one cluster

CPU Utilization

1-100 clients, 1 sec task, 1KB
message, 2,000 CPU

98%
message, 2,000 CPU

98%

Task Throughput

1KB Message
2,700 messages/sec

Single Task Round Trip 2.4 ms

Single Session Round Trip

100KB common data, 10 second 1KB
Task

11.8 ms

6/12/2008 29

Enterprise wide Grid … Sharing with SLA

6/12/2008 30

Application execution

allocate
<consumer,resreq>

Symphony Client Applications

SSM

EGO APIResource
Sharing Plan

execute
<allocation,container>

return
allocationSession

Director

register

application

A

B C D

100 cpus

50 cpus 25 cpus 25 cpus

Lending/Borrowing

EGO Master

PEM PEM

LIM LIM

PEM PEM

LIM LIM

Security
Plug-ins

Scheduling
Plug-ins

Resource
Plug-ins

Consumer

EGO Agent

Director

SI SI SI SI

SIM SIM SIM SIM

6/12/2008 31

SOA application integration: Platform Symphony

• Symphony: parameter sweep
1. decompose the problem

2. execute parameter sweep

3. merge results / aggregation of results

• Keep It Sweet and Simple application integration:
static double GridMonteCarloPi(int simulations) {

// connect to the grid and create a session
Connection connection = SoamFactory.Connect("computePi");

6/12/2008 32

Connection connection = SoamFactory.Connect("computePi");
Session session = connection.CreateSession(…);

// send the tasks on the grid
int numTasksToSend = 10;
double numberOfSimulationsPerTask = simulations/numTasksToSend;
for (int taskCount = 0; taskCount < numTasksToSend; taskCount++) {

session.SendTaskInput(numberOfSimulationsPerTask);
}

// get results back and aggregate them
EnumItems enumItems = session.FetchTaskOutput((ulong)numTasksToSend);
foreach (TaskOutputHandle output in enumItems) {

hits += (double) output.GetTaskOutput();
}
return 4 * hits / simulations;

}

Ask the grid to allocate
resources for the

"computePi"
application, and make

them available in a
session

• Symphony: parameter sweep
1. decompose the problem

2. execute parameter sweep

3. merge results / aggregation of results

• Keep It Sweet and Simple application integration:
static double GridMonteCarloPi(int simulations) {

// connect to the grid and create a session
Connection connection = SoamFactory.Connect("computePi");

SOA application integration: Platform Symphony

6/12/2008 33

Connection connection = SoamFactory.Connect("computePi");
Session session = connection.CreateSession(…);

// send the tasks on the grid
int numTasksToSend = 10;
double numberOfSimulationsPerTask = simulations/numTasksToSend;
for (int taskCount = 0; taskCount < numTasksToSend; taskCount++) {

session.SendTaskInput(numberOfSimulationsPerTask);
}

// get results back and aggregate them
EnumItems enumItems = session.FetchTaskOutput((ulong)numTasksToSend);
foreach (TaskOutputHandle output in enumItems) {

hits += (double) output.GetTaskOutput();
}
return 4 * hits / simulations;

}

Send parameters of
sweep as input

messages to compute
nodes

• Symphony: parameter sweep
1. decompose the problem

2. execute parameter sweep

3. merge results / aggregation of results

• Keep It Sweet and Simple application integration:
static double GridMonteCarloPi(int simulations) {

// connect to the grid and create a session
Connection connection = SoamFactory.Connect("computePi");Upon message reception

SOA application integration: Platform Symphony

6/12/2008 34

Connection connection = SoamFactory.Connect("computePi");
Session session = connection.CreateSession(…);

// send the tasks on the grid
int numTasksToSend = 10;
double numberOfSimulationsPerTask = simulations/numTasksToSend;
for (int taskCount = 0; taskCount < numTasksToSend; taskCount++) {

session.SendTaskInput(numberOfSimulationsPerTask);
}

// get results back and aggregate them
EnumItems enumItems = session.FetchTaskOutput((ulong)numTasksToSend);
foreach (TaskOutputHandle output in enumItems) {

hits += (double) output.GetTaskOutput();
}
return 4 * hits / simulations;

}

Upon message reception
each compute node

executes the service code
and returns a result

public override void OnInvoke(TaskContext taskContext)
{

double hits = 0; double x, y;
double simulations = (double) taskContext.GetTaskInput();
// seed
Random Rnd = new Random(1234);
// random throw for each simulation
for (int i = 1; i < simulations; i++)
{

x = Rnd.NextDouble();y = Rnd.NextDouble();
hits += ((x * x + y * y) <= 1) ? 1 : 0;

}
// return the number of hits
taskContext.SetTaskOutput(hits);

}

• Symphony: parameter sweep
1. decompose the problem

2. execute parameter sweep

3. merge results / aggregation of results

• Keep It Sweet and Simple application integration:
static double GridMonteCarloPi(int simulations) {

// connect to the grid and create a session
Connection connection = SoamFactory.Connect("computePi");

SOA application integration: Platform Symphony

6/12/2008 35

Connection connection = SoamFactory.Connect("computePi");
Session session = connection.CreateSession(…);

// send the tasks on the grid
int numTasksToSend = 10;
double numberOfSimulationsPerTask = simulations/numTasksToSend;
for (int taskCount = 0; taskCount < numTasksToSend; taskCount++) {

session.SendTaskInput(numberOfSimulationsPerTask);
}

// get results back and aggregate them
EnumItems enumItems = session.FetchTaskOutput((ulong)numTasksToSend);
foreach (TaskOutputHandle output in enumItems) {

hits += (double) output.GetTaskOutput();
}
return 4 * hits / simulations;

}

Client program receives
the messages and

aggregates the results

Smaller tasks for a fluid approach

On the grid, bigger is not necessarily better

• Handle reliability in large scale computation
• rerunning a task is a drop in the ocean

• rerunning tasks costs nothing compared to the length of the entire job

• Single task failure:
• automated isolation of black holes - application(-session) specific

• other application may reuse this host and run perfectly

SOA application integration: Platform Symphony

• Potential failure reasons:
• One (or some) corrupted data records

• in case of parameter sweep, only that one task will fail, that tries to
compute the corrupted record

6/12/2008 37

SOA application integration: Flexibility

• XML Application profile (metadata) defines
– Local action on failure

• (e.g. "this machine’s DB driver is not working properly, restart
my task elsewhere")

– Global action on failure
• (e.g. "this job’s data is corrupted, fail entire job ")

• Client application defines• Client application defines
– action upon exception or result

• (e.g. "this input didn’t work, let me try another one")

• Overall, more flexibility for failure control
– Yet simple to define

– and not always necessary to recompile entire
application to extend failure control

SOA application integration: Application steering

• Task is expendable: may be used to steer the
application
– Probe tasks can be used to measure application-

specific properties,
• Send a few montecarlo tasks, get their results, and use the

elapsed time to predict overall computation time and
reduce/increase precision of simulationreduce/increase precision of simulation

– Or to measure grid properties
• In effect, failure control and black listing is a sanity check on

resources

• Grid as an open book
– APIs to get resource availabily allow the application to

fine-tune its own problem decomposition
• No use to launch 100 tasks on 10 cpus, if 20 will do the job…

SOA application integration: gridify objects

class Option {
float price();

}

class Vanilla class Exotic

static float GridPortfolioPricing() {
…

// send the tasks on the grid
for (each option in Portfolio) {

session.SendTaskInput(option);
}

}

Client program prices a class Vanilla class ExoticClient program prices a
diversified portfolio by

sending options on the grid

They may be Vanilla (very
quick pricing , ~1s) or

Exotic (long pricing, ~1h)

Problem: Exotic options finish pricing long after vanillas

More generally, how can a grid cater for
complex object models ?

V Vclass Option {
float price();

}

class Vanilla

SOA application integration: gridify objects

static float GridPortfolioPricing() {
…

// send the tasks on the grid
for (each option in Portfolio) {

session.SendTaskInput(option);
}

}

class Exotic

E

Exotic option reuses the
grid by launching a

montecarlo job

class Vanilla

Solution: Exotic objects reuse the grid to speed up computation!

Grid Oriented Object, a.k.a. GOO, is fluid…

class Exotic

float price() {
…

// send montecarlo tasks on the grid
for (each trajectory) {

session.SendTaskInput(trajectory);
}

}

SOA application integration: fluid containers

• If tasks are expendable, preemption becomes
possible

• Preemption means reallocation of an
application’s resource to another application

– Moving resources according to priorities becomes
less costly (in terms of lost cpu time)less costly (in terms of lost cpu time)

• Consequence is: to take full advantage of
application fluidity, the underlying container of
application must also be quick and flexible

• How do those Platform Symphony features and applied methods relate to
a Grid Programming Paradigm? (question from EchoGrid Athens’08)

• By delivering high performance instantiation services to SOA
applications, and provide for its messaging and complete lifecycle in the
Grid, Platform Symphony simplifies Grid integration for SOA applications
– Easy to use API provide for short time to results. Low number of additional

code lines (see example)
– Detailed policies and resource SLAs allow for dynamic adaptation and

(Grid) Programming Paradigm
SOA application integration with Platform Symphony

– Detailed policies and resource SLAs allow for dynamic adaptation and
balancing between application and infrastructure requirements. (lending &
borrowing between application domains based on controlled policies)

• Application steering looks for the optimal balance between resource
allocation size and problem decomposition – automatically achieving best
possible performance AND best resource utilization even for applications
with dramatically varying runtimes per problem.

– In the systematic approach towards improved usability of Grids, we investigate whether
application steering – up to now done application specific – will become a general
infrastructure feature

• These rich infrastructure features take away the need to implement
respective functions in the application code

Example 3: QosCosGrid

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project

Vision:
Grid ≈ virtual supercomputer

≈

China

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project

≈

6/12/2008 45

Architecture Overview

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 46

QCG Paralel Toolkit

Current Implementation

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 47

47

Current Implementation

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 48

QCG Paralel Toolkit

Target Implementation

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 49

QCG Paralel Toolkit

• On-demand resource acquisition and formation of application
specific Grids: QosCosGrid

• QosCosGrid (= Quasi Opportunistic Supercomputing for
Complex Systems on the Grid) Complex Systems
applications use the QosCosGrid-Toolbox to parallelize
their workload in order to use distributed resources.

QosCosGrid workflow

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 50

their workload in order to use distributed resources.

• Towards the QosCosGrid-Broker they express
requirements and behavior by xml “job profile”

• The Broker acquires resources on-demand and form an
application specific Grid, creates RTG = resource
topology graph

• RTG is used to map the application to the resources,
placing MPI communicators at the right place

QCG Job profile

• The QCG Job Profile document is inspired by an existing
XML-based job description language supported by one
of the main components of the QCG middleware called
GRMS.

• End users can describe topology and resource
requirements, in particular:

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 51

requirements, in particular:
– required aggregations and hierarchies of resources

(computing nodes, clusters, sub-clusters, storage elements etc.),
– required resource properties (operating system, memory,

number of CPUs, speed of the CPU on a resource),
– required network and connection properties (bandwidth, latency

and capacity),
– required applications and licenses available at destination

computing resources.

QCG Resource Description Model

• RTG (Resource Topology Graph)
• A common XML resource description language
• Provide description of:

– Resources, tasks, processes
– Topology
– Communication properties

• Serves as a “bridge” between the various system components

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 52

• Serves as a “bridge” between the various system components
• Used to describe, publish, evaluate, reserve and monitor heterogeneous

resources across the QosCos Grid

• Supplementary Java implementation:
– Functional behavior and logic
– XML to Java objects marshaling/un-marshaling
– Specialized types of RTG objects, according to the middleware requirements

(i.e. Resource advertisement, Meta-scheduling, SLA’s, Monitoring, and User
requirements.)

QCG RTG – Resource Description
View

Each Resource

(computing, storage,

Network Resource
Define end-to-end
network properties
between resources

and Resource

Communication

Groups

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 53

network) is defined

by a set of Metrics:
cpuCount
cpuSpeed
cpuType

memoryTotal
diskTotal
osName

…Resource

Communication Groups
Define any combination of

nested aggregations of
homogeneous/Heterogeneous

resources/clusters etc.

Resource

Availability
Describes availability

and other state
related information
along time intervals

QCG RTG - Metrics

Metrics are basic
building blocks for
resource definition.

It consists of
description,

properties, and
functionality

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 54

functionality

New Metrics can be
easily added, and

inherit the
appropriate behavior

Resource Co-Allocation Protocol

• A simple, robust 2-phase commit alike protocol for planning
based co-allocation of resource across multiple ADs

Highlights:

– Simple negotiation strategy, prevent “bargaining” which
would prolong the number of negotiation rounds.

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 55

would prolong the number of negotiation rounds.

– Global guarantied resource pricing methodology, allows
each AD to estimate theirs potential profit.

– Each AD decides what to contribute, and provides a
guaranteed “Resource Offer” accordingly.

– Support co-allocation scenarios, requiring a coordinated
booking from different ADs.

Resource Co-Allocation Protocol

Resource Offers
Resources are

reserved in advance
and offered to the
Grid layer by the

ADs

6/12/2008 56

Scheduling & SLA

Signature
Is performed using the

global resource
availability picture at the

Grid Layer

Results:

Each task is provided with
resources and topology

guarantees, backed up by
advance reservation, and

SLAs

Fast Connection

Meta Scheduler - The Objective
To provide a resource allocation for the
user’s tasks, constrained by:
•Resource requirements
•Topology requirements
•Communication requirements

resources

This work was supported by the EC grant FP6-2005-IST-5 033883 for the QosCosGrid project 6/12/2008 57

Slow Connection
Slow Connection

time

R1

R2

R3

R4

Job1

Job2

Job3
Job 4

Job 5

Summary

6/12/2008 58

Summary

Trends in Grid Programming

Conclusion:

• Less code due to infrastructure services

• Auto-adaption of apps & infrastructure to each other

• Advantage: overcoming the versioning problem, legacy code problem
application tells infrastructure which version to provide.

• Advanced Grid services:
changing app configuration,
optimizing problem optimizing problem
decomposition

• Maintain application autonomy:
run on single host must be
possible

• Example:
Symphony Developer Edition: single host Grid

• Multi-Components applications / multi-instance (MPI, HPC-SOA) / SOA:

• production stability depends on total availability (error propagation, see next page!)

• Auto-response Grid infrastructure to improve total availability

6/12/2008 59

Reliability � Usability � Value
Component and System availability Comments

p-component # component p-total Probability per component and total system

0,9 2 0,81000

0,99 2 0,9801098% good = 175 hours bad every year

0,999 2 0,99800

0,9999 2 0,99980

0,99999 2 0,99998 production stability: four 9's minimum

0,9 4 0,65610

0,99 4 0,9606096% good = 350 hours bad every year

0,999 4 0,99601

Caution:
be aware –

6/12/2008 60

0,999 4 0,99601

0,9999 4 0,9996099,96% good = 210 minutes bad every year

0,99999 4 0,99996 production stability: four 9's minimum

0,9 12 0,28243

0,99 12 0,88638

0,999 12 0,98807

0,9999 12 0,99880

0,99999 12 0,99988 will not reach production stability

probability worse than 0,9 => more than 876 hours disfunct per annum

probability better than 0,9 => less than 876 hours disfunct per annum

probability better than 0,9999 => less than 53 minutes disfunct per annum

be aware –
even 52
minutes per
year could
mean 52
breakdowns
!!
(1 minute
duration
each)

Reliability � Usability � Value

• Performance Platform LSF (by 2006/07):

– 10millions jobs per day throughput with >95% job-slot utilization
based on EDA job mix, max 5min for failover. (EDA job mix: 5min, 15min, 30min job-
runtime, 120Hz job submission and dispatch rate)

• Performance and Scalability translates into Reliability

• Reliability can be measured as “MTBF” -
Mean Transactions (=Jobs) Between FailureMean Transactions (=Jobs) Between Failure

• Reliability is achieved by proactive incident management

• self-healing, recovery from incidents, policy driven
proactive problem containment (both for resources and
applications), no job loss during operation or in error
condition, reconfiguration or failover

61

• Grid moves toward ease of use, plug&play app integration.
• Applications and infrastructure will describe themselves

and adapt to each others requirements resp. offerings
• Infrastructure will cover up on disruptions, incidents, both

on resource as application side
• First steps already done! Move on towards flexibility &&

reliability. Need for standards.

Trends in Grid Programming

reliability. Need for standards.
• Looking forward to discuss and share with you!

Bernhard Schott
Dipl. Phys.
EU-Research Program Manager

Platform Computing GmbH

Frankfurt Office
Direct +49 (0) 69 348 123 35
Mobile +49 (0) 171 6915 405
Email: bschott@platform.com
Skype: bernhard_schott
Web: http://www.platform.com/

6/12/2008 62

Thank youThank you

www.platform.com

