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Cloud Definition: User’s Viewpoint 

•  A net computing technology that 
–  Provides 7 types of resources 
–  For institutional and personal users 
–  The resources are 

•  In the cloud (Net) 
•  Virtualized 
•  Owned on demand 
•  Used on demand 
•  Easy to own and use 

•  In the cloud: virtualized resources in the Net �
•  Service: can get the value, not physically owned 
•  On demand: low cost, flexible 
•  Virtual ownership: user in control, service quality guarantee 
•  Ease: fast, low cost 
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Amazon EC2 Example 

•  Cloud 
•  Service �

Small Large Extra Large 
Bits 32 64 64 
RAM 1.7 GB 7.5 GB 15 GB 
Disk 160 GB 850 GB 1690 GB 
Compute 
Units 

1 4 8 

I/O Medium High High 
Firewall Yes Yes Yes 
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On Demand 

•  A user wants to render an animation movie of 
60 minutes, with 30x60x60=108,000 frames. 
Need to do it ten times �

•  Rendering one frame needs 20 seconds 
•  To buy a PC to do the rendering 

– 10x2,160,000 s = 6000 h = 250 days, ￥7000 
•  To use EC2 

– With108,000 AMIs, needs half a day, ￥150 



Virtual Ownership 
•  A user owns AMI (and the underlying EC2/S3), 

as if he owns a PC or server 
–  Linux OS 
–  Can develop, deploy, use various software and data �
–  Which value can be used as Net services 

•  Amazon’s “guarantee” of service quality �
–  Amazon SLA 
–  >1000 production users 

•  Amazon S3 disruptions �
–  2008.2 2 hours, 2008.7 8 hours �



Ease to Own and Use 

•  Understand HowTo:    <20 minutes �
•  Register to become a user  <15 minutes �
•  Create AMI’s    <5 minutes �

•  A potential user only needs 
– An email address 
– A credit card 



Programming Landscape CPU GPU 
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Net programming 
      GSML,  MapReduce 
      Pig, HOCL 

Parallel programming 
      TM, SIMT 

     Extensions to GPU 
         GPGPU 
         APU 
         MPU 

MPI/OpenMP/OpenCL etc. 



Clash of the Computer and the 
Network Approaches 

•  Fetching 10-byte data from a blog  
server: 162 ms, 52 context switches 
at server side 

•  Sustained < 5% Peak? 
•  Many levels of programming 

interfaces 
•  New coupling  

1 Network Access 

2  Inter Network 

3  Transport 

4  Application 

 ? 
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Distributed and Decentralized 
Architecture �
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Typical Structure of a CUDA Program 

•  Global variables declaration 
–  __host__ 
–  __device__... __global__, __constant__, __texture__ 

•  Function prototypes 
–  __global__ void kernelOne(…) 

•  Main () 
–  allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, 
bytes ) 

–  transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…) 
–  execution configuration setup 
–  kernel call – kernelOne<<<execution configuration>>>( args… ); 
–  transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…) 
–  optional: compare against golden (host computed) solution 

•  Kernel – void kernelOne(type args,…) 
–  variables declaration -  __local__, __shared__ 
•  automatic variables transparently assigned to registers or local 
memory 

–  __syncthreads()…�



Example: Matrix Multiplication 
   Objective:  matrix computing:  C = A(wA , hA) x B (wB , wA)   

   Method: 
•  tiling matrix C to square sub-matrix(Csub) : 

   improving ratio of compute to off-chip memory access to 
    (wA*wB)/(block_size*block_size)  
•  Massive thread level computing parallelism : 

        1.each block :      /* must be within one SM */ 
   computing one square sub-matrix Csub of C; 
        2.each thread within block :  /* thread executed on one core at a time */ 
   computing one element of Csub ;      
        3.block size of Csub = 16 ,respectively  256-thread/block :  
    a. multiple of warp size for no computing resources                           
idle (32 physical thread/per warp) 
   b. one steam multiprocessor in G80 can take up 768-                       
thread: 3-block x 256(thread/block), so simultaneously         
executing 32-thread of a warp choosing from these 3 blocks. 

    Host side code (the host machine) 

    Device side code (the G80 graphic card) 
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Fig. 1 Matrix Multiplication 

Fig. 2  G80 implementation  
of CUDA Memories 



// Forward declaration of the device multiplication function  
__global__ void Muld(float*, float*, int, int, float*);  
// Host multiplication function  
void Mul(const float* A, const float* B, int hA, int wA, int wB,  
float* C)  
{  
1. // Allocate and Load M, N to device memory float* Ad, Bd;  
int size = hA * wA * sizeof(float);  
cudaMalloc((void**)&Ad, size);  
cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);  
float* Bd;  
size = wA * wB * sizeof(float);  
cudaMalloc((void**)&Bd, size);  
cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);  
// Allocate C on the device  
float* Cd;  
size = hA * wB * sizeof(float);  
cudaMalloc((void**)&Cd, size);  

Step 1: Input Matrix Data Transfer 
(Host-side Code) 

allocates global 
memory on device 
(Fig. 2) to store A 

copies A from host 
memory to global 

memory 

__global__ defines 
a kernel function 

called by host but 
executed on device 



Step 2: Output Matrix Data Transfer 
(Host-side Code) 

2.   // Kernel invocation code – to be shown later in Step 4;
     …
3.    // Read Cd from the device
      cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);  
       // Free device memory  
       cudaFree(Ad);       cudaFree(Bd);       cudaFree(Cd); 
     }

Note:      cudaMemalloc()/cudaMemcpy()/
cudaFree()  
They are API functions of CUDA’s runtime and used 
to allocated linear memory and transfer data 
between host and device. 



Step 3: Kernel Function 
(device-side code) 

// Matrix multiplication kernel – per thread code 
__global__ void Muld(float* A, float* B, int wA, int wB, float* C)  
{  
// Block index and thread index: 
int bx = blockIdx.x; int by = blockIdx.y;  
int tx = threadIdx.x; int ty = threadIdx.y;  
// Index of the first sub-matrix of A processed by the block  
int aBegin = wA * BLOCK_SIZE * by;  
// Index of the last sub-matrix of A processed by the block  
int aEnd = aBegin + wA - 1;  
// Step size used to iterate through the sub-matrices of A  
int aStep = BLOCK_SIZE;  
// Index of the first sub-matrix of B processed by the block  
int bBegin = BLOCK_SIZE * bx;  
// Step size used to iterate through the sub-matrices of B  
int bStep = BLOCK_SIZE * wB;  
// The element of the block sub-matrix that is computed  by the thread  
float Csub = 0;  

CUDA’s keyword: 
Block&thread shape :1D/2D/3D 
 facilitate selecting work and 

address shared data 
(bx/by  tx/ty see Fig.1) 

From Fig.1 : 
(0,0) is at the upper left corner 

X means horizontal; 
Y means vertical. 



Step 3: Kernel Function(cont) 
for (int a = aBegin, b = bBegin;  
    a <= aEnd; a += aStep, b += bStep) {  
    // Shared memory for the sub-matrix of A and B 
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];  
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];  
    // each thread loads one element of each matrix  
    // Load the matrices from global memory to shared memory; 
    As[ty][tx] = A[a + wA * ty + tx];  
    Bs[ty][tx] = B[b + wB * ty + tx];  
    // Synchronize to make sure the matrices are loaded  
    __syncthreads();  
    // Multiply the two matrices together;  
   for (int k = 0; k < BLOCK_SIZE; ++k)  
        Csub += As[ty][k] * Bs[k][tx];  
        // Synchronize to make sure that the preceding  
        // computation is done before loading two new  
        // sub-matrices of A and B in the next iteration  
    __syncthreads();  
    }  
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;  
C[c + wB * ty + tx] = Csub;  
} // Write the block sub-matrix to global memory;   

Why As/Bs located in “share 
memory” see Fig.2 :  
       16K-Byte on chip; 
       16-bank: suport 16 
simultaneous accesses 
when no bank confict; 

        2-cycle access delay 
 compare to 200-cycle delay   
of global memory ! 

__syncthreads(): 
  CUDA’S intrinsics:  
   1. like barrier() ;    
   2. but only synchronizes all 
threads in a block; 
   3. guarantee  memory 
consistency (e.g.store 
serializing) to avoid RAW 
hazard in shared or global 
memory 



    // Setup the execution configuration 
         dim3 dimBlock (BLOCK_SIZE, BLOCK_SIZE);  
         dim3 dimGrid (wB / dimBlock.x, hA / dimBlock.y);  
    // Launch the device computation threads! 
         Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);  

Step 4: Kernel Invocation 
(Host-side Code)  

Built-in Variables(reseved) of CUDA 
dim3 gridDim: 

Dimensions of the grid in blocks 
   (gridDim.z unused) 

dim3 blockDim: 
Dimensions of the block in threads 

Here: 
   thread array is 2D: 16x16 
   block   array is 2D: wB/16 x hA/16 
   since block size is 16. 

Host code uses  
    “<<<dimGrid, dimBlock>>>” as  
    execution configuration to call  
    function Muld. 



Why Transactional Memory 
•  Pitfalls with locks: 

–  Priority inversion. A lower priority thread is preempted 
while holding a lock which is needed by high priority 
threads. 

–  Convoying. When a thread holding a lock is de-scheduled 
or interrupted, other threads that need the lock are queue 
up, unable to progress. 

–  Deadlock. Threads attempt to acquire locks in different 
order. 

•  Atomic primitives such as CompareAndSwap() operate 
on only one word at a time, resulting in complex 
algorithms.  

•  Compositionality. It is difficult to compose multiple calls 
to multiple objects into atomic sections. 



Basic Semantics of  
Transactional Memory 

•  Transaction: a sequence of steps executed by a single 
thread. Allow atomic updates to multiple memory 
locations. 
–  Serializability. Transactions must appear to execute sequentially, 

in a one-at-a-time order. Do not deadlock or livelock. 
–  Atomicity. Transactions are executed speculatively, meaning 

they only make tentative changes to objects. If a transaction 
completes without synchronization conflict, then it commits. 
Otherwise it aborts. Intermediate states are not observable to 
other transactions. 

•  Nested transaction 
–  One method can start a transaction and then call another 

method without worrying about whether or not the nested 
method call starts a new transaction.  

–  A nested transaction can abort without aborting its parent. 



TM example I: the enq() method 

•  The enq() method of a unbounded transactional queue 
object. All operations within enq() either complete 
atomically or abort without any side effect. 

Void enq(T item){ 

    atomic { 

 //construct a new node 

 NodeType node = new_node(item); 

 //insert the node into the unbounded queue 

 node.next = tail; 

 tail = node; 

    }//atomic 

}//enq 



TM example II: the enq() method 
with retry mechanism 

•  The enq() method of a bounded transactional queue. The method 
enters an atomic block and tests whether the queue is full. If so, it 
calls retry, which rolls back the enclosing transaction, pauses it, 
and restarts it later. 

Void enq(T item){ 

    atomic { 

 if(count == items.length) 

     retry; 

 items[tail] = item; 

 if(++tail == items.length) 

     tail = 0; 

 count++; 

    }//atomic 

}//enq 



TM example III:  
composing transactions 

•  The deq_enq() method composes a deq() call that 
dequeues an item x from a queue q0 and an enq() call 
that enqueues that item to another queue q1. 

Void deq_enq(QueueT q0, QueueT q1){ 

    atomic { 

 NodeT item = q0.deq(); 

 q1.enq(item); 

    }//atomic 

}//enq 



TM example IV:  
conditional synchronization 

•  The multiple_deq() call succeeds if either sub-transaction q0.deq() 
completes or sub-transaction q1.deq() completes. 

•  The orElse statement joins two or more code blocks. The thread 
first executes the first block. If it calls retry, then that sub-
transaction is rolled back, and the thread executes the second 
block. If that block also calls retry, then the orElse as a whole 
pauses, and later reruns each of the atomic blocks until one of 
them completes. 

Void multiple_deq(QueueT q0, QueueT q1){ 

    atomic { 

 NodeT item = q0.deq(); 

    } orElse { 

 NodeT item = q1.deq(); 

    } 

}//enq 



Some Challenges of TM 

•  I/O: writes to disk, display, network, etc 
–  I/O operations are hard to roll back 

•  Performance isolation 
–  Most hardware TM can not context switch within a 

transaction 
–  Long transactions can block progress 
–  OS system calls put kernel resources inside 

transactions  
•  Real time 

–  TM makes real time software more challenging 



Pig Example 

User Url Time 

Amy cnn.com 8:00 

Amy bbc.com 10:00 

Amy flickr.com 10:05 

Fred cnn.com 12:00 

Chris Olston et al, Yahoo! Research 
Find the top 10 most visited pages in each 
category 

Url Categor
y 

PageRan
k 

cnn.com News 0.9 

bbc.com News 0.8 

flickr.com Photos 0.7 

espn.com Sports 0.9 

Visits  Url  Info 



Data  Flow 

Load Visits 

Group by url 

Foreach url 
generate count 

Load Url Info 

Join on url 

Group by category 

Foreach category 
generate top10 urls 



In Pig Latin 
visits             = load ‘/data/visits’ as (user, url, time); 
gVisits          = group visits by url; 
visitCounts  = foreach gVisits generate url, count(visits); 

urlInfo          = load ‘/data/urlInfo’ as (url, category, pRank); 
visitCounts  = join visitCounts by url, urlInfo by url; 

gCategories = group visitCounts by category; 
topUrls = foreach gCategories generate top(visitCounts,10); 

store topUrls into ‘/data/topUrls’; 



Programming Difficulties 
–  Many languages 
–  Multiple modules 
–  JSP tight coupling
–  Web Server is the bottleneck 

–  Overhead in accessing resources: 
54% codes, 48% time

–  Other overheads 
(communication, job partition, 
parallelism):  
19% codes, 20% time

Traditional: Povray-G 

Lines of Codes Development 
Time 

UI 74 (html, css, javascript) 155

App Logic 121 (java, JSP) 45
Others 133 (javascript, java) 125

Accessing 
Resources 

379 (Java) 290

Total 712 615

Web Portal

CNGridLocal

Web 
Server

ssh+gsub

TeraGrid

ssh
+qsub

ssh
+gram

ssh

Globus



GSML：Povray-G �
UI�
App Logic�
Environment

GEngine GEngine GEngine GEngine 

GlobusCNGridLocal TeraGrid

GRenderFunnel GRenderFunnel GRenderFunnel GRenderFunnel 

GEngine 

ButtonFunnel 

TaskFunnel 

PovrayGUI 

Event Processing 



GRenderFunnel in Povray-G �
addEventHandler(“render”, new EventHandler(){ //当GRenderFunnel收到render事件触发�

     public void handle(renderEvent){ 
          String povFile = renderEvent.getParamVal(“povFile”); //从事件中获取渲染的
pov文件�

          EventWait uplodwait = uploadAgent.sendEventWithAck(uploadEvent); //上传
文件并返回等待句柄�

         EventSelect es = new EventSelect(new EventWait[]{uploadwait});//创建eventSelect 
         EventWait ew = es. Select(); //阻塞语义的调用EventSelect.select() 
         String  result= ew. getEvent().getParamVal(“result”); //从事件中获取上传结果�

         renderPngEvent.setParamVal(“configFile”,povFile); 
         renderAgent.sendEvent(renderPngEvent); //renderPngEvent需要参数povFile. 
}}); 

GSML Editor App Logic Composer 



GSML vs. Traditional
•  Lines of Codes Reduced 18.5%, Time reduced 88.9% 

–  UI:     84%
–  App Logic:   44%
–  Accessing Resources:          94% 
–  Others:    100%



Summary �
•  Many programming models are being 

researched and used for parallel and net 
computing, now clouds 

•  Main issues 
– Efficiency �
– Correctness (e.g., eventual consistency) �
– Usability �

•  Many open problems 
– Evaluation workloads, metrics 
– What are the suitable models (cf: SIMT) 



zxu@ict.ac.cn 


