
Programming Clouds

Zhiwei Xu 徐志伟�
Institute of Computing Technology (ICT)

Chinese Academy of Sciences
zxu@ict.ac.cn

INSTITUTE OF COMPUTING
 TECHNOLOGY

2008.10 EchoGrid Conference

Contents
•  What is cloud programming?
•  Landscape of concurrent programming
•  What can we learn from

–  Intra-Process
•  SIMT: CUDA
•  Transactional Memory

–  Inter-Process
•  Map-Reduce, Pig
•  GSML

A process could be huge �
Could have many I/O, sys �

JVM

Tomcat+Axis Container

S
ervice

S
ervice

S
ervice

S
ervice

Client Client

Cloud Definition: User’s Viewpoint

•  A net computing technology that
–  Provides 7 types of resources
–  For institutional and personal users
–  The resources are

•  In the cloud (Net)
•  Virtualized
•  Owned on demand
•  Used on demand
•  Easy to own and use

•  In the cloud: virtualized resources in the Net �
•  Service: can get the value, not physically owned
•  On demand: low cost, flexible
•  Virtual ownership: user in control, service quality guarantee
•  Ease: fast, low cost

A, D
O, P
C, N, S

Amazon EC2 Example

•  Cloud
•  Service �

Small Large Extra Large
Bits 32 64 64
RAM 1.7 GB 7.5 GB 15 GB
Disk 160 GB 850 GB 1690 GB
Compute
Units

1 4 8

I/O Medium High High
Firewall Yes Yes Yes

A, D
O, P
C, N, S

On Demand

•  A user wants to render an animation movie of
60 minutes, with 30x60x60=108,000 frames.
Need to do it ten times �

•  Rendering one frame needs 20 seconds
•  To buy a PC to do the rendering

– 10x2,160,000 s = 6000 h = 250 days, ￥7000
•  To use EC2

– With108,000 AMIs, needs half a day, ￥150

Virtual Ownership
•  A user owns AMI (and the underlying EC2/S3),

as if he owns a PC or server
–  Linux OS
–  Can develop, deploy, use various software and data �
–  Which value can be used as Net services

•  Amazon’s “guarantee” of service quality �
–  Amazon SLA
–  >1000 production users

•  Amazon S3 disruptions �
–  2008.2 2 hours, 2008.7 8 hours �

Ease to Own and Use

•  Understand HowTo: <20 minutes �
•  Register to become a user <15 minutes �
•  Create AMI’s <5 minutes �

•  A potential user only needs
– An email address
– A credit card

Programming Landscape CPU GPU

Memory

Disk

CPU GPU

Memory

Disk

CPU GPU

CPU GPU

Memory

Disk

CPU GPU
CPU GPU

Memory

Disk

CPU GPU
CPU GPU

Memory

Disk

CPU GPU
CPU GPU

Memory

Disk

CPU GPU

Net programming
 GSML, MapReduce
 Pig, HOCL

Parallel programming
 TM, SIMT

 Extensions to GPU
 GPGPU
 APU
 MPU

MPI/OpenMP/OpenCL etc.

Clash of the Computer and the
Network Approaches

•  Fetching 10-byte data from a blog
server: 162 ms, 52 context switches
at server side

•  Sustained < 5% Peak?
•  Many levels of programming

interfaces
•  New coupling

1 Network Access

2 Inter Network

3 Transport

4 Application

 ?

 GSML
 BPEL

 WSRF
 WSDL
 SOAP

HTML XML
HTTP

TCP/IP Stack Web/Web Service
 Stacks

HW system
VMM
OS

Database
App

HW (core) �
Thread VMM

App
Thread

Distributed and Decentralized
Architecture �

Execution
Single Multiple

Control

Decentralized

Centralized

Admin, Knowledge, Naming,
Coding, Contribution

Salesforce.com

many web sites

Google
Amazon
Teragrid

WWW
Clouds
PNC environment

Virtual hosts

Virtual Machines

Number of Execution Sites (Datacenters, Machines)

Distributed Systems

Decentralized
Systems

ACM QUEUE March/
April 2008, 40-53

Typical Structure of a CUDA Program

•  Global variables declaration 
–  __host__ 
–  __device__... __global__, __constant__, __texture__ 

•  Function prototypes 
–  __global__ void kernelOne(…) 

•  Main () 
–  allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, 
bytes ) 

–  transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…) 
–  execution configuration setup 
–  kernel call – kernelOne<<<execution configuration>>>( args… ); 
–  transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…) 
–  optional: compare against golden (host computed) solution 

•  Kernel – void kernelOne(type args,…) 
–  variables declaration -  __local__, __shared__ 
•  automatic variables transparently assigned to registers or local 
memory 

–  __syncthreads()…�

Example: Matrix Multiplication
  Objective: matrix computing: C = A(wA , hA) x B (wB , wA)

  Method:
•  tiling matrix C to square sub-matrix(Csub) :

 improving ratio of compute to off-chip memory access to
 (wA*wB)/(block_size*block_size)
•  Massive thread level computing parallelism :

 1.each block : /* must be within one SM */
 computing one square sub-matrix Csub of C;
 2.each thread within block : /* thread executed on one core at a time */
 computing one element of Csub ;
 3.block size of Csub = 16 ,respectively 256-thread/block :
 a. multiple of warp size for no computing resources
idle (32 physical thread/per warp)
 b. one steam multiprocessor in G80 can take up 768-
thread: 3-block x 256(thread/block), so simultaneously
executing 32-thread of a warp choosing from these 3 blocks.

  Host side code (the host machine)

  Device side code (the G80 graphic card)

A

B

c

Csub

BLOCK_SIZE
wB wA

BLOCK_SIZE BLOCK_SIZE

bx

tx 012

0 1 2

by ty
21
0

bsize-1

2

1

0

B
L

C
O

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

hA

w
A

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)
Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Fig. 1 Matrix Multiplication

Fig. 2 G80 implementation
of CUDA Memories

// Forward declaration of the device multiplication function
__global__ void Muld(float*, float*, int, int, float*);
// Host multiplication function
void Mul(const float* A, const float* B, int hA, int wA, int wB,
float* C)
{
1. // Allocate and Load M, N to device memory float* Ad, Bd;
int size = hA * wA * sizeof(float);
cudaMalloc((void**)&Ad, size);
cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);
float* Bd;
size = wA * wB * sizeof(float);
cudaMalloc((void**)&Bd, size);
cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);
// Allocate C on the device
float* Cd;
size = hA * wB * sizeof(float);
cudaMalloc((void**)&Cd, size);

Step 1: Input Matrix Data Transfer
(Host-side Code)

allocates global
memory on device
(Fig. 2) to store A

copies A from host
memory to global

memory

__global__ defines
a kernel function

called by host but
executed on device

Step 2: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code – to be shown later in Step 4;
 …
3. // Read Cd from the device
 cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);
 // Free device memory
 cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
 }

Note: cudaMemalloc()/cudaMemcpy()/
cudaFree()
They are API functions of CUDA’s runtime and used
to allocated linear memory and transfer data
between host and device.

Step 3: Kernel Function
(device-side code)

// Matrix multiplication kernel – per thread code
__global__ void Muld(float* A, float* B, int wA, int wB, float* C)
{
// Block index and thread index:
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
// The element of the block sub-matrix that is computed by the thread
float Csub = 0;

CUDA’s keyword:
Block&thread shape :1D/2D/3D
 facilitate selecting work and

address shared data
(bx/by tx/ty see Fig.1)

From Fig.1 :
(0,0) is at the upper left corner

X means horizontal;
Y means vertical.

Step 3: Kernel Function(cont)
for (int a = aBegin, b = bBegin;
 a <= aEnd; a += aStep, b += bStep) {
 // Shared memory for the sub-matrix of A and B
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
 // each thread loads one element of each matrix
 // Load the matrices from global memory to shared memory;
 As[ty][tx] = A[a + wA * ty + tx];
 Bs[ty][tx] = B[b + wB * ty + tx];
 // Synchronize to make sure the matrices are loaded
 __syncthreads();
 // Multiply the two matrices together;
 for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += As[ty][k] * Bs[k][tx];
 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();
 }
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;
} // Write the block sub-matrix to global memory;

Why As/Bs located in “share
memory” see Fig.2 :
 16K-Byte on chip;
 16-bank: suport 16
simultaneous accesses
when no bank confict;

 2-cycle access delay
 compare to 200-cycle delay
of global memory !

__syncthreads():
 CUDA’S intrinsics:
 1. like barrier() ;
 2. but only synchronizes all
threads in a block;
 3. guarantee memory
consistency (e.g.store
serializing) to avoid RAW
hazard in shared or global
memory

 // Setup the execution configuration
 dim3 dimBlock (BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid (wB / dimBlock.x, hA / dimBlock.y);
 // Launch the device computation threads!
 Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

Step 4: Kernel Invocation
(Host-side Code)

Built-in Variables(reseved) of CUDA
dim3 gridDim:

Dimensions of the grid in blocks
 (gridDim.z unused)

dim3 blockDim:
Dimensions of the block in threads

Here:
 thread array is 2D: 16x16
 block array is 2D: wB/16 x hA/16
 since block size is 16.

Host code uses
 “<<<dimGrid, dimBlock>>>” as
 execution configuration to call
 function Muld.

Why Transactional Memory
•  Pitfalls with locks:

–  Priority inversion. A lower priority thread is preempted
while holding a lock which is needed by high priority
threads.

–  Convoying. When a thread holding a lock is de-scheduled
or interrupted, other threads that need the lock are queue
up, unable to progress.

–  Deadlock. Threads attempt to acquire locks in different
order.

•  Atomic primitives such as CompareAndSwap() operate
on only one word at a time, resulting in complex
algorithms.

•  Compositionality. It is difficult to compose multiple calls
to multiple objects into atomic sections.

Basic Semantics of
Transactional Memory

•  Transaction: a sequence of steps executed by a single
thread. Allow atomic updates to multiple memory
locations.
–  Serializability. Transactions must appear to execute sequentially,

in a one-at-a-time order. Do not deadlock or livelock.
–  Atomicity. Transactions are executed speculatively, meaning

they only make tentative changes to objects. If a transaction
completes without synchronization conflict, then it commits.
Otherwise it aborts. Intermediate states are not observable to
other transactions.

•  Nested transaction
–  One method can start a transaction and then call another

method without worrying about whether or not the nested
method call starts a new transaction.

–  A nested transaction can abort without aborting its parent.

TM example I: the enq() method

•  The enq() method of a unbounded transactional queue
object. All operations within enq() either complete
atomically or abort without any side effect.

Void enq(T item){

 atomic {

 //construct a new node

 NodeType node = new_node(item);

 //insert the node into the unbounded queue

 node.next = tail;

 tail = node;

 }//atomic

}//enq

TM example II: the enq() method
with retry mechanism

•  The enq() method of a bounded transactional queue. The method
enters an atomic block and tests whether the queue is full. If so, it
calls retry, which rolls back the enclosing transaction, pauses it,
and restarts it later.

Void enq(T item){

 atomic {

 if(count == items.length)

 retry;

 items[tail] = item;

 if(++tail == items.length)

 tail = 0;

 count++;

 }//atomic

}//enq

TM example III:
composing transactions

•  The deq_enq() method composes a deq() call that
dequeues an item x from a queue q0 and an enq() call
that enqueues that item to another queue q1.

Void deq_enq(QueueT q0, QueueT q1){

 atomic {

 NodeT item = q0.deq();

 q1.enq(item);

 }//atomic

}//enq

TM example IV:
conditional synchronization

•  The multiple_deq() call succeeds if either sub-transaction q0.deq()
completes or sub-transaction q1.deq() completes.

•  The orElse statement joins two or more code blocks. The thread
first executes the first block. If it calls retry, then that sub-
transaction is rolled back, and the thread executes the second
block. If that block also calls retry, then the orElse as a whole
pauses, and later reruns each of the atomic blocks until one of
them completes.

Void multiple_deq(QueueT q0, QueueT q1){

 atomic {

 NodeT item = q0.deq();

 } orElse {

 NodeT item = q1.deq();

 }

}//enq

Some Challenges of TM

•  I/O: writes to disk, display, network, etc
–  I/O operations are hard to roll back

•  Performance isolation
–  Most hardware TM can not context switch within a

transaction
–  Long transactions can block progress
–  OS system calls put kernel resources inside

transactions
•  Real time

–  TM makes real time software more challenging

Pig Example

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Chris Olston et al, Yahoo! Research 
Find the top 10 most visited pages in each 
category 

Url Categor
y

PageRan
k

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits  Url  Info 

Data Flow

Load Visits 

Group by url 

Foreach url 
generate count 

Load Url Info 

Join on url 

Group by category 

Foreach category 
generate top10 urls 

In Pig Latin
visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Programming Difficulties
–  Many languages
–  Multiple modules
–  JSP tight coupling
–  Web Server is the bottleneck

–  Overhead in accessing resources:
54% codes, 48% time

–  Other overheads
(communication, job partition,
parallelism):
19% codes, 20% time

Traditional: Povray-G

Lines of Codes Development
Time

UI 74 (html, css, javascript) 155

App Logic 121 (java, JSP) 45
Others 133 (javascript, java) 125

Accessing
Resources

379 (Java) 290

Total 712 615

Web Portal

CNGridLocal

Web
Server

ssh+gsub

TeraGrid

ssh
+qsub

ssh
+gram

ssh

Globus

GSML：Povray-G �
UI�
App Logic�
Environment

GEngine GEngine GEngine GEngine

GlobusCNGridLocal TeraGrid

GRenderFunnel GRenderFunnel GRenderFunnel GRenderFunnel

GEngine

ButtonFunnel

TaskFunnel

PovrayGUI

Event Processing

GRenderFunnel in Povray-G �
addEventHandler(“render”, new EventHandler(){ //当GRenderFunnel收到render事件触发�

 public void handle(renderEvent){
 String povFile = renderEvent.getParamVal(“povFile”); //从事件中获取渲染的
pov文件�

 EventWait uplodwait = uploadAgent.sendEventWithAck(uploadEvent); //上传
文件并返回等待句柄�

 EventSelect es = new EventSelect(new EventWait[]{uploadwait});//创建eventSelect
 EventWait ew = es. Select(); //阻塞语义的调用EventSelect.select()
 String result= ew. getEvent().getParamVal(“result”); //从事件中获取上传结果�

 renderPngEvent.setParamVal(“configFile”,povFile);
 renderAgent.sendEvent(renderPngEvent); //renderPngEvent需要参数povFile.
}});

GSML Editor App Logic Composer

GSML vs. Traditional
•  Lines of Codes Reduced 18.5%, Time reduced 88.9%

–  UI: 84%
–  App Logic: 44%
–  Accessing Resources: 94%
–  Others: 100%

Summary �
•  Many programming models are being

researched and used for parallel and net
computing, now clouds

•  Main issues
– Efficiency �
– Correctness (e.g., eventual consistency) �
– Usability �

•  Many open problems
– Evaluation workloads, metrics
– What are the suitable models (cf: SIMT)

zxu@ict.ac.cn

