2008.10 EchoGrid Conference

Programming Clouds

Zhiwei Xu &%
Institute of Computing Technology (ICT)
Chinese Academy of Sciences
zXu@ict.ac.cn

“ XtreemO_S' A

Ty European Commission Zﬁizzngrﬂnux

Contents

 What is cloud programming?
 Landscape of concurrent programming

« \What can we learn from

— Intra-Process

« SIMT: CUDA

* Transactional Memory
— Inter-Process

* Map-Reduce, Pig

« GSML

A process could be huge
Could have many 1/O, sys

Tomcat+Axis Container

A, D

Cloud Definition: User’s Viewpoint |o,r
G N, S

* A net computing technology that
— Provides 7 types of resources
— For institutional and personal users

— The resources are
* In the cloud (Net)
* Virtualized
« Owned on demand
» Used on demand
- Easy to own and use

 In the cloud: virtualized resources in the Net

« Service: can get the value, not physically owned

« On demand: low cost, flexible

« Virtual ownership: user in control, service quality guarantee
« Ease: fast, low cost

A, D
0, P

Amazon EC2 Example |cxs

* Cloud
¢ Service
Small Large Extra Large

Bits 32 64 64
RAM 1.7 GB 7.5 GB 15 GB
Disk 160 GB 850 GB 1690 GB
Compute 1 4 8
Units
/0 Medium High High
Firewall Yes Yes Yes

On Demand

A user wants to render an animation movie of
60 minutes, with 30x60x60=108,000 frames.
Need to do it ten times

Rendering one frame needs 20 seconds

o buy a PC to do the rendering
—10x2,160,000 s = 6000 h = 250 days, ¥ 7000

To use EC2
— With108,000 AMIs, needs half a day, ¥ 150

Virtual Ownership

* A user owns AMI (and the underlying EC2/S3),
as if he owns a PC or server

— Linux OS
— Can develop, deploy, use various software and data
— Which value can be used as Net services

 Amazon’s “guarantee” of service quality
— Amazon SLA
— >1000 production users

 Amazon S3 disruptions
— 2008.2 2 hours, 2008.7 8 hours

Ease to Own and Use

Understand HowTo: <20 minutes
Register to become a user <15 minutes
Create AMI's <5 minutes

A potential user only needs
— An email address
— A credit card

Programming Landscape CPU | [GPU

Memory

Net programming

Extensions to GPU CPU GPU

GPGPU
APU CPU GPU
MPU Memory ™,

&

MPI1/OpenMP/OpenCL etc.

S~ [. [i
I cpu | [6Pyl [cPu GPu || Il €Pu T GPu || || cPu || GPU ||
'| CPU | | GPU CPU || GP ;/i CPU | | GPU CPU || GPU ||
' | Memory Memory | ! | Memory Memory ;

|
| Disk Disk : : Disk Disk |
| | I |

Clash of the Computer and the
Network Approaches

Fetching 10-byte data from a blog
server: 162 ms, 52 context switches

at server side

] TCP/IP Stack Web/Web Service
Sustained < 5% Peak? Stacks
Many levels of programming T
interfaces BPEL

- 4 Application WSRF
New coupling WSDL
SOAP
HTML XML
HTTP
App App
Database
Th d 3 Transport
rea oS
=
Thread VMM VMM 2 Inter Network ?
HW (core) HW system 1 Network Access

Distributed and Decentralized
Architecture

Admin, Knowledge, Naming,
Coding, Contribution

Control _ Distribu_ted Systems
A "’__.—.—;-—-/-y.’_ :.\\\
. N .
; “Virtual hosts P \(/:\1W\QV \\\'\ Decentralized
Decentralized | \ - : / Clouds \. Systems
. l/wtual Machines ?,I PNC environm/entﬂ
~ ~. . - - |
e 'I- et uren e nanannnnnraannnnns I
] '
Salesforce.com \ Google ,I
. : Amazon
Centralized : = \ . /
many web sites : \ Teragrid P
: \ /
~ ~ e P
: ’ ; > Execution
Single Multiple

Number of Execution Sites (Datacenters, Machines)

NVIDIA Tesla GPU with 112 Streaming Processor Cores
host CPU |

ACM QUEUE March/
April 2008, 40-53

system memory l

GPU :
, host interface I

.. input assemble '

setup/raster/Zcull
vertex work pixel work
distribution distribution

distribution

compute work |

texture
unit

|

interconnection network

texture
unit

texture

unit unit

texture

texture
unit

texture
unit

——

44 ROP|1 12 l . ROP| L2 ROPIi 12 | ROP | L2
¥ o memory ! “ memory memory I memory
% e —

Typical Structure of a CUDA Program

Global variables declaration
— __host__
— __device_ ... _global__, _constant__, _ texture__
Function prototypes
— __global__ void kernelOne(...)
Main ()
- gll?cat)e memory space on the device — cudaMalloc(&d_GlIblVarPtr,
ytes
— transfer data from host to device — cudaMemCpy(d_GlblVarPtr, h_Gl...)
— execution configuration setup
— kernel call — kernelOne<<<execution configuration>>>(args...);
— transfer results from device to host — cudaMemCpy(h_GlblVarPtr,...)
— optional: compare against golden (host computed) solution
Kernel — void kernelOne(type args,...)

— variables declaration - __local__, _ shared__
« automatic variables transparently assigned to registers or local
memory

— __syncthreads()...

Example: Matrix Multiplication

® Objective: matrix computing: C = A(wWA, hA) x B (wB , wA)

e Method:

 tiling matrix C to square sub-matrix(Csub) :
improving ratio of compute to off-chip memory access to
(wA*wB)/(block_size*block_size)
 Massive thread level computing parallelism :
1.each block : /* must be within one SM */
computing one square sub-matrix Csub of C;
2.each thread within block : /* thread executed on one core at a time */
computing one element of Csub ;
3.block size of Csub = 16 ,respectively 256-thread/block :
a. multiple of warp size for no computing resources
idle (32 physical thread/per warp)
b. one steam multiprocessor in G80 can take up 768-
thread: 3-block x 256(thread/block), so simultaneously
executing 32-thread of a warp choosing from these 3 blocks.

e Host side code (the host machine)
e Device side code (the G80 graphic card)

by 1

2

0

ty bsize-1

Host

0
tx

012
B I
N
wn

__________ %%
I S
@}
o |
(=]
\ 4

A C L
1 o 1 ﬁ
[N} : E
T H 2

1 Csub I MI g

: 0 @)
F-----=-Z=-zZzZz-f=-=z==z= o
v Moo —
4+—r<4—r > A

BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

WA wB >
Grid
Block (0, 0) Block (1, 0)

Shared Memory

Shared Memory

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

4

4

4

Global Memory

Constant Memory

Fig. 1 Matrix Multiplication

Fig. 2 G80 implementation
of CUDA Memories

Step 1: Input Matrix Data Transfer

(Host-side Code)
__global __ defines

// Forward declaration of the device multiplication function a kernel function

' [l | ' e

__global_—vomr e called by host but
// Host multiplication function executed on device

void Mul(const float* A, const float* B, int hA, int wA_int wR
float* C) allocates global

{ memory on device
1. I/ Allocate and Load M, N to device m (Fig. 2) to store A
int size = hA * wA * sizeof(float);
cudaMalloc((void**)&Ad, size);
cudaMemcpy(Ad, A, size, cudaMemcpyHostTaoDevice);

float™ Bd; copies A from host
size = wA * wB * sizeof(float); memory to global
cudaMalloc((void**)&Bd, size); memory

cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);
/[Allocate C on the device

float* Cd;

size = hA ™ wB * sizeof(float);

cudaMalloc((void**)&Cd, size);

Step 2: Output Matrix Data Transfer
(Host-side Code)

2. // Kernel invocation code — to be shown later in Step 4;

3. // Read Cd from the device

cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);
I/l Free device memory

cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);

}
Note: cudaMemalloc()/cudaMemcpy()/
cudaFree()

They are API functions of CUDA's runtime and used
to allocated linear memory and transfer data
between host and device.

Step 3: Kernel Function

(device-side code)

I/l Matrix multiplication kernel — per thread code
__global__ void Muld(float* A, float* B, int wA, int wB, float* C)

{ CUDA's keyword:

// Block index and thread index: Block&thread shape :1D/2D/3D
int bx = blockldx.x; int by = blockldx.y; facilitate selecting work and
int tx = threadldx.x; int ty = threadldx.y; address shared data

bx/by _tx_/ty see Fig.1)

/T Index of the first sub-matrix of A proces:
int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

/] Step size used to iterate through the sub- From Fig.1 :

int aStep = BLOCK_SIZE; (0,0) is at the upper left corner
/| Index of the first sub-matrix of B processg X means horizontal;

int bBegin = BLOCK_SIZE * bx; Y means vertical.

Il Step size used to iterate through the sub-matt >

int bStep = BLOCK_SIZE * wB;

// The element of the block sub-matrix that is computed by the thread
float Csub = 0;

Step 3: Kernel Function(cont)

for (int a = aBegin, b = bBegin; Why As/Bs located in “share
a <= aknd; a += aStep, b += bStep) { memory” see Fig.2 :
ory for the sub-matrix of Aand B 16K-Byte on chip;
__shared _ float As[BLOCK_SIZE][BLOCK SIZE]; 16-bank: suport 16

__shared__ float Bs[BLOCK_ SIZE][BLOCK_ SIZE]; simultaneous accesses
/[each thread loads one element of each matrix when no bank confict:
// Load the matrices from global memory to shared memory;
As[ty][tx] = Ala + wA ™ ty + tx]; 2-cycle access delay
Bs[ty][tx] = B[p + wB * ty + tx]; compare to 200-cycle delay
iz¢ to make sure the matrices are loadedof global memory !
___syncthreads();
// Multiply the two matrices together;
for (intk = 0; k < BLOCK_SIZE; ++k)
Csub += As[ty][k] * Bs[K][tx];
/I Synchronize to make sure that the preceding
// computation is done before loading two new

/I sub-matrices of A and B in the next iteration
___syncthreads();

}
intc =wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
Clc + wB * ty + tx] = Csub;
} // Write the block sub-matrix to global memory;

__syncthreads():
CUDA'S intrinsics:
1. like barrier() ;

threads in a block;

3. guarantee memory
consistency (e.g.store
serializing) to avoid RAW
hazard in shared or global
memory

2. but only synchronizes all

Step 4: Kernel Invocation
(Host-side Code)

Il Setup the exec¢ution configuration
dim3 dimBlock|(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid (WB / dimBlock.x, hA / dimBlock.y);

/| Launch the device computation threads!
Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

Built-in Variables(reseved) of CUDA
dim3 gridDim:
Dimensions of the grid in blocks
(gridDim.z unused)
dim3 blockDim:
Dimensions of the block in threads
Here:
thread array is 2D: 16x16
block array is 2D: wB/16 x hA/16
since block size is 16.

Host code uses
“<<<dimGrid, dimBlock>>>" as
execution configuration to call
function Muld.

Why Transactional Memory

o Pitfalls with locks:

— Priority inversion. A lower priority thread is preempted
while holding a lock which is needed by high priority
threads.

— Convoying. When a thread holding a lock is de-scheduled
or interrupted, other threads that need the lock are queue
up, unable to progress.

— Deadlock. Threads attempt to acquire locks in different
order.

« Atomic primitives such as CompareAndSwap() operate
on only one word at a time, resulting in complex
algorithms.

« Compositionality. It is difficult to compose multiple calls
to multiple objects into atomic sections.

Basic Semantics of
Transactional Memory

* Transaction: a sequence of steps executed by a single
thread. Allow atomic updates to multiple memory
locations.

— Serializability. Transactions must appear to execute sequentially,
in a one-at-a-time order. Do not deadlock or livelock.

— Atomicity. Transactions are executed speculatively, meaning
they only make tentative changes to objects. If a transaction
completes without synchronization conflict, then it commits.
Otherwise it aborts. Intermediate states are not observable to
other transactions.

 Nested transaction

— One method can start a transaction and then call another
method without worrying about whether or not the nested
method call starts a new transaction.

— A nested transaction can abort without aborting its parent.

TM example I: the enqg() method

The enq() method of a unbounded transactional queue
object. All operations within enq() either complete

atomically or abort without any side effect.
Void enq(T item){

atomic {
//construct a new node
NodeType node = new_node(item);
//insert the node into the unbounded queue
node.next = tail;
tail = node;

}//atomic

}//enq

TM example Il: the enq() method
with retry mechanism

« The eng() method of a bounded transactional queue. The method
enters an atomic block and tests whether the queue is full. If so, it
calls retry, which rolls back the enclosing transaction, pauses it,

and restarts it later.
Void enq(T item){

atomic {
if(count == items.length)
retry;
items[tail] = item;
if(++tail == items.length)
tail = 0;
count++;

}//atomic
¥//eng

TM example llI:
composing transactions

 The deq_enqg() method composes a deq() call that
dequeues an item x from a queue q0 and an enq() call
that enqueues that item to another queue q1.

Void deqg_enqg(QueueT g0, QueueT gl1){
atomic {
NodeT item = q0.deq();
gl.enq(item);
}//atomic
}//eng

TM example |V:
conditional synchronization

The multiple_deq() call succeeds if either sub-transaction q0.deq()
completes or sub-transaction q1.deq() completes.

The orElse statement joins two or more code blocks. The thread
first executes the first block. If it calls retry, then that sub-
transaction is rolled back, and the thread executes the second
block. If that block also calls retry, then the orElse as a whole
pauses, and later reruns each of the atomic blocks until one of
them completes.

Void multiple_deq(QueueT q0, QueueT q1){
atomic {
NodeT item = q0.deq();
} orElse {
NodeT item = ql.deq();

}//enq

Some Challenges of TM

 1/O: writes to disk, display, network, etc
— |/O operations are hard to roll back

« Performance isolation

— Most hardware TM can not context switch within a
transaction

— Long transactions can block progress
— OS system calls put kernel resources inside
transactions
* Real time
— TM makes real time software more challenging

Pig Example

Chris Olston et al, Yahoo! Research

Find the top 10 most visited pages in each

category

Amy
Amy
Amy

Fred

Visits

cnn.com
bbc.com
flickr.com

cnn.com

8:00

10:00

10:05

12:00

Url Info

cnn.com News
bbc.com News
flickr.com Photos

espn.com Sports

0.9

0.8

0.7

0.9

Data Flow

url
Url Info
count .

on url

by category

category
top10 urls

In Pig Latin

visits = ‘/datal/visits’ 2= (user, url, time);

gVisits = Visits url;

visitCounts = gVisits url, count(visits);
urlinfo = /data/urlinfo” as (url, category, pRank);
visitCounts = visitCounts v url, urlinfo by url;
gCategories = visitCounts by category;

topUrls = gCategories top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

- Traditional: Povray-G

Programming Difficulties

=|ﬁ7=j=i + +gr he globus'alliance
B, - A
Local CNGrid TeraGrid Globus
Lines of Codes Development
Time
Ul 74 (html, css, javascript) 155
App Logic 121 (java, JSP) 45
Others 133 (javascript, java) 125
Accessing 379 (Java) 290
Resources
Total 712 615

Many languages

Multiple modules

JSP tight coupling

Web Server is the bottleneck

Overhead in accessing resources:
54% codes, 48% time

Other overheads
(communication, job partition,
parallelism):

19% codes, 20% time

GSML : Povray-G

Ul
App Logic

Environment

\/
ButtonFunnel PovrayGUI
GEngine -

Event Processing

GEngine GEngine GEngine GEngine
k) ! ~ 1_) i
= glﬂ?‘;&% reé{:f @ffﬂobus‘auianm

Local CNGrid TeraGrid Globus

Q EnvFunnel0#0

rendei
[= o]
'“-:' EventSet
upl%ad
uploadRes:It

":' EventSef|

renager

GRenderFunnel in Povray-G

addEventHandler(“render”, new EventHandler(){ //24GRenderFunnel i 3Jrender S+ fiil &
public void handle(renderEvent){
String povFile = renderEvent.getParamVal(“povFile”); // AN Z4-+ FREXVE G2)

ipovj A

EventWait uplodwait = uploadAgent.sendEventWithAck(uploadEvent); /A%
S I [P 554) A
EventSelect es = new EventSelect(new EventWait[] {uploadwait});//f] @ eventSelect
EventWait ew = es. Select(); //FHZE & X)14 F EventSelect.select()
String result= ew. getEvent().getParamVal(“result”); // W AF 3R E_E AL 2k
renderPngEvent.setParamVal(“configFile”,povFile);
renderAgent.sendEvent(renderPngEvent); //renderPngEvent 77 2 2 #povFile.

¥ 3)s

GSML Editor | App Logic Composer

T Texto=0

(3 Button0#0 textChapged

'"3-' EventSet
setProperty

ropertymesu

Layout |°.° FunnelLogic l°°° SessionLogic J@ code

GSML vs. Traditional

e Lines of Codes Reduced 18.5%, Time reduced 88.9%

- Ul 84%
— App Logic: 44%0
— Accessing Resources: 94%
— Others: 100%
. D440 0400000 BGM
;300 =
=50 —
= 155
(-
~ 19 125 e
=Y 5
‘ D™ ~ O
i =3 = 18—
58 = . O | lom
BOOD0 Epte EfEs goor

Summary

* Many programming models are being
researched and used for parallel and net
computing, now clouds

* Main issues
— Efficiency
— Correctness (e.g., eventual consistency)
— Usability

* Many open problems

— Evaluation workloads, metrics
— What are the suitable models (cf: SIMT)

A AN A AR AR O

)

o
-
» R
sy .
\v. —-_ w
»
t bt Ca—- |
% . .
. :
-
\
- ~

1
)
.

\ \

<

